

Flight Dynamics

GS SDR Section 13

Outline

- Functions & Objectives
- Status from Peer Reviews
- Orbit Analysis
- Requirements
- GPS Ground Support
- FDF Support
- Flight Dynamics Software
- Management

Functions and Objectives

- Provide ground-based orbit and attitude support for GLAST
 - Pre-launch flight dynamics analyses
 - Independent validation of in-flight GPS orbit solutions
 - Contingency orbit determination as needed
 - Attitude validation & sensor calibration
 - TDRS ephemeris data to support upload of TDRS orbit vectors
 - Flight Dynamics consultation and testing support to FOT as needed
 - FDF support provided under the MOMS contract & PSLA's

Changes Since SRR

None

Results from Peer Reviews

- Held 2 Flight Dynamics Peer Reviews
 - Preliminary Design Peer Review, February 10, 2004
 - Critical Design Peer Review, July 10, 2004
- ▶ 1 RFA from the February 2004 Peer Review is open
- ▶ 4 RFA's from the July 2004 Peer Review are open

Open Peer Review RFA's

- 1. Navigation capabilities have not been compared to predictive requirements
- 2. Orbit Determination During Re-entry Operations
- 3. Ground-Based Attitude Determination
- 4. TDRSS DOWD Feasibility and Oscillator Characteristics
- 5. Process TDRSS, C-Band, and NORAD B3 Tracking Data for Early Mission Support

Orbit Profile

- Nominal orbit insertion is 565 km altitude, circular, inclined at 28.5°
- Primary orbit determination is provided via redundant General Dynamics Viceroy GPS receivers
- Hydrazine propulsion system will provide controlled reentry only

Orbit Decay Analysis

Flight Dynamics Requirements

Flight Dynamics Requirements come from:

- GLAST Ground Systems Requirements Document (GSRD); Level 3
 Requirements
- GLAST MOC Functional & Performance Requirements Document;
 Level 4 Requirements, linked to Level 3 Reqs.
- GLAST PSLA
- NASA/Delta Launch Vehicle PSLA

Orbit Requirements

- The FDF shall provide orbit analysis support to the MOC for the pre-launch, and L&EO phases
- ▶ The FDF shall receive GPS telemetry data from the MOC
- The FDF shall perform orbit prediction using the MOC provided GPS data
 - This will be performed by an FDS system in the MOC instead of the FDF facility.

Orbit Requirements - Launch

- Standard FDF Support as documented in the NASA/Delta Launch Vehicle PSLA
 - FDF is responsible for processing real-time Delta second stage telemetry guidance (RIFCA) data
 - FDF generates and transmits acquisition data to the stations providing down-range support to the Delta LV
 - FDF shall receive the launch vehicle separation vector from KSC/Boeing during launch
 - FDF shall provide orbit prediction support using the launch vehicle separation vector

Orbit Requirements - Contingency

- The FDF shall provide predictive and definitive orbit products to the MOC
- The FDF shall perform orbit determination using TDRSS Differenced One-Way Doppler (DOWD) data provided by the SN
- The FDF shall perform orbit determination using NORAD Two-Line Elements (TLE)

Attitude Requirements

- The ADS shall receive attitude telemetry data from the MOC
- The ADS shall validate the on-board computed attitude during the L&EO phase
- ► The ADS shall perform attitude determination using telemetry data provided by the MOC within an accuracy of 1.0°
- The ADS shall provide attitude calibration and validation results to the MOC

GPS Ground Support

- FDF will validate GPS orbit solutions during spacecraft checkout activities
- During GPS initialization, the time to first fix (TTFF) will be considerably shorter if the ground helps the receiver find the GPS satellites
 - setting the approximate initial position coordinates
 - setting the time and date correctly
 - installing a current satellite almanac
- FDF can provide Orbit Determination support in the unlikely event of a dual GPS receiver failure
 - We are developing contingency plans for short-term and long-term GPS failure scenarios

GPS Short-Term Failure

- GPS dropout of 30 minutes or less
 - Orbit accuracy of 3.3 km maintained by onboard propagation from last valid GPS orbit state
 - Spacecraft clock propagated using OCXO oscillator from last valid GPS time

GPS Multi-Day Failure

- GPS dropout of 30 minutes to 3 days
 - Orbit solution accuracy in degraded mode
 - GNC subsystem can accept and propagate spacecraft orbital element uploads from the ground system
 - Two sources of ground-based orbit knowledge
 - Last valid GPS telemetry downlink
 - NORAD TLE's
 - FOT will begin scheduling TDRSS One-Way Doppler services

GPS Extended Failure

GPS dropout of 3 days or more

- FOT will schedule TDRSS One-Way Doppler services for DOWD
- FDF will perform OD using GTDS and provide daily orbit solutions to the FOT
- FOT will uplink daily orbital element sets to the spacecraft
- Definitive orbit accuracy requirements can be met with DOWD

DOWD

- Differenced One-Way Doppler (DOWD) will be used for verification of GPS solutions and can be used a contingency orbit determination method
- Requires scheduling simultaneous One-Way Doppler services with two non-collocated TDRS satellites
- S-band tracking via either of the 2 GLAST half-Omni transmitters (+X side or –X side)
- FDF performs orbit determination from TDRS tracking data using Goddard Trajectory Determination System; GTDS removes frequency bias from the transceiver's oscillator

DOWD Analysis Setup

- ► GLAST in rocking mode, rocking angle = 30°
- ▶ TDRS Tracking Schedule from STK:

TDRS Pair	Pass Start (UTC)	Pass Duration (sec)
TDE & TDZ	3/21/2006 0:46:31	231
TDE & TDZ	3/21/2006 12:41:39	282
TDW & TDZ	3/21/2006 23:50:31	213
TDE & TDZ	3/22/2006 12:32:10	368
TDW & TDZ	3/22/2006 23:42:37	185
TDE & TDZ	3/23/2006 10:54:31	693
TDE & TDZ	3/23/2006 22:50:22	677

DOWD Analysis Results

- Definitive Position Error (72 hour arc)
 - Solar Flux = 105.0, Position Error = 52 to 212 meters
 - Solar Flux = 175.0, Position Error = 85 to 330 meters
 - Well within the GLAST orbit requirement of 3.3 km
- TDRS visibility excellent for all inertial pointing mode profiles
- TDRS visibility adequate in sky survey mode; visibility increases as rocking angle increases
- Existing GTDS software can use DOWD for GLAST orbit determination; no software modifications needed

DOWD Tracking Data Reqs.

- 2 passes per day with 2 non-collocated TDRS satellites
- Simultaneous One-Way Doppler tracking services to both TDRS satellites
- Minimum pass duration of 3 minutes
- Passes spaced from 10 hours to 14 hours apart

FDF Interfaces

► FDF-MOC

 Defined in the GLAST FDF/MOC ICD, submitted to ground system CCB July 2004

▶ FDF-KSC

- Defined in NASA/Delta Launch Vehicle PSLA
- Institutional launch support

► FDF-SN

Institutional TDRSS tracking services

FDF Support

- Support documented in GLAST PSLA
- Provide the post launch orbit solution to the MOC within 1 hour after GLAST separation using RIFCA data from KSC/Boeing.
- For initial GPS checkout and contingency in case of GPS receiver failure, FDF will use DOWD for OD.
- Provide TDRSS ephemerides to MOC
- Support end-of-mission operations
- The FDF will utilize the NORAD TLE sets for orbit contingency. The accuracy of the orbit data products provided to the MOC must be sufficient for acquisition only.

GLAST FD Data Flow Diagram

Flight Dynamics System (FDS)

- Goldbelt Orca/Omitron is tasked to develop the Flight Dynamics System (FDS)
- FDS provides orbit and attitude based products to the Mission Planning System
- FDS is a delivered component of the MOC software primary functionality in MOC Release 2
- Code 595 will provide Omitron with consultation, analysis support, and testing support for FDS

Orbit and Attitude Planning Tools

- Satellite Tool Kit (STK®)will be used in the MOC
- Predictive attitude will come from the science timeline
- Predictive orbit will be from either:
 - GPS telemetry (time, position, velocity), filtered through STK/OD, propagated with STK/HPOP
 - 2. FDF-supplied ephemeris from DOWD
 - 3. NORAD TLE using SPG4 propagator
- Definitive orbit will be from GPS, with FDF DOWD solutions as backup if needed
- STK Pro will be used for mission planning products
- STK/Astrogator will be used for re-entry maneuver planning (not needed until after mission year 5)

MOC-Based Attitude Support Tools

- No real-time attitude determination required
- Code 595 will provide the MOC with the Attitude Determination System (ADS)
 - ADS is a MATLAB-based system
 - Provides non-real-time attitude determination, attitude validation, attitude sensor calibration
- Code 595 will provide software maintenance and acceptance testing of ADS
- MOC will provide workstation(s) to host the ADS
 - Code 595 will provide MATLAB software and licenses
 - Code 595 will provide L&EO support and ADS training to FOT

ADS Implementation Schedule

- Only 1 release of ADS in July 2005, coincident with MOC Release 2
- Most of the existing ADS code is re-usable, and requires minimal change and configuration
- The major enhancements are:
 - Add a 3rd star tracker (ADS currently only support 2)
 - Code modification and configuration
 - Testing and integration
 - Acceptance testing support
 - Demo and user training
 - Documentation

Software Integration & Testing

- MOC developers will provide integration of FDS software
- Code 595 will deliver ADS for integration into MOC
- ► FDS, ADS, and FDF will be tested in GRT 4 to demonstrate that all FD requirements are satisfied
- End-to-End Tests, Ops Readiness Tests, Mission Simulations, and Launch Readiness tests will demonstrate operational readiness

Use of COTS/GOTS

- ▶ COTS
 - STK
 - MATLAB
- ► GOTS
 - ADS

Configuration Management

- GLAST Ground System CCB will control Level 4 requirements, ICDs, etc.
- MOC CCB will control element-level Cl's
 - FDS, ADS, Attitude Prediction Software
 - Test Plans, User's Guides, Procedures, etc.

Documentation

- GLAST Ground System Requirements Document (GSRD) CCB approved 12/03
- GLAST PSLA Submitted to Project CCB
- GLAST MOC Functional & Performance Requirements
 Document Submitted to CCB 7/04
- ► GLAST MOC/FDF ICD Submitted to CCB 7/04
- ▶ ADS Acceptance Test Plan 3/05
- ADS User's Guide 7/05
- Operational FD Procedures Draft 7/05

Procurement Plans

Procure MATLAB software & licenses in March 2005

Code 595 Staffing Profile

Staffing will include 1 senior engineer and 1-3 junior engineers

- FY05 1.5 FTE

- FY06 1.5 FTE

- FY07 2.0 FTE

– FY08 & → Contingency support only

FDF staffing provided via MOMS contract

Issues & Concerns

- No major issues or concerns
- Particular focus will be applied to the development and testing of the attitude prediction tool
- Need to levy 2 additional requirements on SAI
 - Provide pseudorange GPS telemetry (up to 6 channels) for Viceroy receiver validation
 - Provide raw star tracker telemetry (H, V, & M_I for each star) for attitude sensor calibration
 - SAI has informally said that they can provide telemetry if they have the requirement to do so